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Kramers-Moyal coefficients in the analysis and modeling of heart rate variability
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Modeling of recorded time series may be used as a method of analysis for heart rate variability studies. In
particular, the extraction of the first two Kramers-Moyal coefficients has been used in this context. Recently,
the method was applied to a wide range of signal analysis: from financial data to physiological and biological
time series. Modeling of the signal is important for the prediction and interpretation of the dynamics underlying
the process. The method requires the determination of the Markov time. Obtaining the drift and diffusion term
of the Kramers-Moyal expansion is crucial for the modeling of the original time series with the Langevin
equation. Both Tabar et al. [Comput. Sci. Eng. 8, 54 (2006)] and T. Kuusela [Phys. Rev. E 69, 031916 (2004)]
suggested that these terms may be used to distinguish healthy subjects from those with heart failure. The
research groups applied a somewhat different methodology and obtained substantially different ranges of the
Markov time. We show that the two studies may be considered consistent with each other as Kuusela analyzed
24 h recordings while Tabar er al. analyzed daytime and nighttime recordings, separately. However, both
groups suggested using the Langevin equation for modeling of time series which requires the fluctuation force
to be a Gaussian. We analyzed heart rate variability recordings for ten young male (age 26—4+3 y) healthy
subjects. 24 h recordings were analyzed and 6-h-long daytime and nighttime fragments were selected. Similar
properties of the data were observed in all recordings but all the nighttime data and seven of the ten 24 h series
exhibited higher-order, non-negligible Kramers-Moyal coefficients. In such a case, the reconstruction of the
time series using the Langevin equation is impossible. The non-negligible higher-order coefficients are due to
autocorrelation in the data. This effect may be interpreted as a result of a physiological phenomenon (especially
occurring for nighttime data): respiratory sinus arrhythmia (RSA). We detrended the nighttime recordings for
the healthy subjects and obtained an asymmetry in the dependence of the diffusion term on the rescaled heart
rate. This asymmetry seems to be an effect of different time scales during the inspiration and the expiration
phase of breathing. The asymmetry was significantly decreased in the diffusion term found for detrended
nighttime recordings obtained from five hypertrophic cardiomyopathy (HCM) patients. We conclude that the
effect of RSA is decreased in the heart rate variability of HCM patients—a result which may contribute to a

better medical diagnosis by supplying a new quantitative measure of RSA.
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I. INTRODUCTION

Recently, the extraction of the first two Kramers-Moyal
coefficients was applied to financial data [1-3]. The data
were assumed to be stationary. Linear trends were removed
by using in the calculation relative changes of the time se-
ries: increments of returns, logarithmic returns, and absolute
changes (increments). However, financial time series are
known to have fat-tailed distributions especially in small
time scales: the probability density of large fluctuations is
high [4]. In spite of this, the data were analyzed using the
Langevin equation. The switching time in ion transport
through biochannels shows similar properties: a power-law
distribution for the channel closed times [5,6]. In this re-
search, negligible higher-order Kramers-Moyal coefficients
were obtained for the time series analyzed. However, the
occurrence of higher Kramers-Moyal terms should be ex-
pected for a non-Gaussian fluctuation force.
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In the literature, one may find examples of data with non-
vanishing higher-order Kramers-Moyal coefficients: the
Dow-Jones index (DJI) fluctuations [3] and the motion of the
Rayleigh particle. Lim et al. [3] suggested that nonvanishing
fourth-order coefficient for DJI is due to nonstationarity. Ply-
ukhin [7] showed that the results obtained depend on the
assumptions about the damping force acting on a massive
particle: the higher corrections in Fokker-Planck equation
were found to be important when the random force is not
Gaussian distributed. It can be seen that the problem of the
occurrence of the higher-order Kramers-Moyal coefficients is
complex and crucial not only for the reconstruction of the
data by means of a stochastic equation but also for the de-
scription of the process.

In this paper, we focus on the analysis of heart rate vari-
ability data in the form of time series of intervals between
heart beats (the distance in time between consecutive R
waves-the RR interval of the electrocardiogram trace). Re-
cently, the reconstruction of the Langevin equation had been
also applied to the analysis of RR interval time series [8—10].
The drift and diffusion coefficients of the Kramers-Moyal
expansion were extracted from measured data. This seems to
be a very promising way of modeling heart rate variability.
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The results published so far show important differences in
the functional dependence of the drift term on the rescaled
magnitude of the RR interval between healthy subjects and
congestive heart failure patients [9]. The method may poten-
tially be used as a diagnostic tool. The functional forms of
the first two coefficients of the Kramers-Moyal expansion
should be useful for the physiological interpretation of heart
rate variability. The drift term describes the deterministic
properties of the process, while the diffusion term is the am-
plitude of the random term of the Langevin equation. The
latter term may yield information on the properties of ran-
dom forces acting on the system. In addition, the knowledge
of their functional dependence may allow the reconstruction
of the signal with similar properties as the original data and
so the understanding of its nature.

The description of heart rate variability with the use of the
Kramers-Moyal expansion seems not complete and the sto-
chastic properties are not fully understood. The aim of this
study is to analyze the properties of the drift and diffusion
terms and their relation to oscillations in the human cardio-
vascular system. We also compute four higher-order coeffi-
cients of the Kramers-Moyal expansion and discuss their
magnitude. We show that detrended nighttime series analysis
reveals an asymmetry in the diffusion term for normal sub-
jects which may be interpreted as the occurrence of two dif-
ferent time scales in the respiration process. While both Kuu-
sela [8] and Tabar et al. [9] analyzed only the first two terms
of the expansion (i.e., the drift and diffusion coefficients), we
obtain non-negligible higher-order terms of Kramers-Moyal
expansion for the nighttime data of the healthy subjects and
mostly for 24 h series. In that case, those signals, for which
higher nonvanishing terms are given, cannot be recon-
structed using the Langevin equation. We check whether
nonstationarity in the data can be the reason for the occur-
rence of non-negligible higher Kramers-Moyal coefficients.
After removing the linear trends from the data recorded dur-
ing the nighttime, we still obtain the higher-order terms in
the expansion. The occurrence of higher-order expansion
terms may be interpreted: it is the effect of respiratory sinus
arrhythmia (RSA)—a physiological phenomenon and an im-
portant source of heart rate variability. We show that the
asymmetry in the functional properties of the diffusion term
is impaired or does not occur for hypertrophic cardiomyopa-
thy patients—a result which may in the future enhance medi-
cal diagnosis of this disease.

II. KRAMERS-MOYAL EXPANSION

Given the time series X(7), the coefficients D™(X,7) of
the Kramers-Moyal expansion [11] need to be determined

IP(X.1) _ _i)” .

p _21< x) PP, (1)

DM (X,1) = l,liml<[X(t+ 7) = X(1)]"), (2)
nir—oT7T

where 7>0 and P(X,t) denotes the probability density of
obtaining X at time 7. The Markov time 7 may be evaluated
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FIG. 1. Time series generated using a third-order deterministic
potential and an additive Gaussian noise (with zero mean and stan-
dard deviation equal to unity).

from the Chapman-Kolmogorov (CK) equation, which Mar-
kov processes obey:

P(X,,t+ 71Xt - T)=fP(X2,f+ X3, 0)P(X3,1|X,,1 - 7)dX,

3)

with X;,X3,X, at the given points in time #=f—7, t3
=t, ty=t+7, respectively. P(X;,t;|X;,t,) is the conditional
probability density. In Eq. (3), the time interval between X,
X5, and X, is taken to be equal, which means that our process
is assumed to be stationary [12].

From the Pawula theorem [11], it follows that, when
D"(X,1)=0 for n=3, Eq. (1) may be rewritten as the
Fokker-Planck equation with the drift (D) and diffusion
(DY) terms

IPX.1)

J &
- —DYX,)P(X,1) + —DP(X,)P(X.1).
p X (X.n)P(X,1) e (X,0)P(X,1)

(4)

If the assumptions of the Pawula theorem hold, Eq. (4) is
equivalent to the Langevin equation, which describes the dy-
namics of the process

dX —_—
ar DX, 1) +\2DP (X, (1), (5)

where I'(¢) is Gaussian noise with (I'(#))=0 and (I'(\)['(¢"))
=8(r—1"). As the process is stationary, the drift and diffusion
coefficients are functions of X and not the time variable but
of a constant—the Markov time.

III. TEST OF THE METHOD

We generated a process with a cubic nonlinearity and an
additive Gaussian noise I'(z) with a zero mean and the stan-
dard deviation equal to unity (Fig. 1) using the equation

031127-2



KRAMERS-MOYAL COEFFICIENTS IN THE ANALYSIS...

o

[

ol
]

X1=1.8
X1=-0.83 X1=0.51

[=]
N
1

o

-

()]
1

o
e
1

I

<}

a
]

conditional probability densities

o
'L [

-2 0 X2 4

FIG. 2. Conditional probability densities of the CK test for the
data presented in Fig. 1. Black curves correspond to the left side of
Eq. (3) and gray correspond to the right side of the Eq. (3),
respectively.

dx \

” =X-X"+2I(). (6)
Equation (6) was integrated numerically using the method
described in Ref. [13] with a time step of 0.01 and the initial
condition X,=0.1. We generated 10° points. The Markov
time was determined using the CK test Eq. (3). For compu-
tational analysis, Egs. (2) and (3) were discretized by divid-

ing the range of X into a constant number of 45 bins. We

S yi=Zimi i) . .
used the formula R =])—]w to estimate the quality

of the fit in the CK test. In Iill)é 2, it can be seen that the fit
was very good with R=0.99. Next, we calculated the first six
coefficients of the Kramers-Moyal expansion. The drift and
diffusion terms are presented in Figs. 3(a) and 3(b) (black
points) as functions of X. From the Langevin equation (5)
and from the equation for the generated process Eq. (6), we
expected the drift term to be a cubic function and the diffu-
sion term—a constant. To find the constant value for D), we
looked for such a range of X for which the linear fit had the
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FIG. 3. (a) Drift term (diamond symbols) with the range of the
variable X, for which the cubic fit (gray line) quality of estimation
coefficient is R=0.98, marked by the solid vertical lines. The solid
line passing through the diamonds is for the convenience of the
eyes only. (b) Diffusion term (diamond symbols) with the range of
X values, for which the average of D'? was equal to 2.13, marked
by vertical lines. The gray horizontal line marks the average value.
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smallest directional coefficient. The best fit range is marked
in Figs. 3(a) and 3(b) by thin vertical lines. In this range, the
function ax—bx> was fit to DU [Fig. 3(a)] with a=b=1.0 and
the Pearson correlation coefficient was R=0.98. The average
value of D® is equal 2.13 for this range. We thus obtained
an acceptable agreement between the properties of the model
and the coefficients extracted from the time series generated
by the model.

The higher-order terms of the expansion had negligible
values (not shown). For example, D® was over 1 order of
magnitude smaller than D'V and D was even 2 orders of
magnitude smaller than D®. According to the Pawula theo-
rem, when the higher-order coefficients vanish, the process
can be described by the Langevin equation (5). Thus, assum-
ing that at least a 1 order of magnitude difference between
the corresponding successive odd (and even, respectively)
coefficients is sufficient, the dynamics underlying the test
process can be considered known and it is possible to recon-
struct it using the Langevin equation.

IV. MEDICAL DATA AND SIGNAL ANALYSIS

Heart rate variability data were extracted during routine
medical examinations from 24 h Holter ECG recordings us-
ing the 563 Strata Scan Del Mar Avionics system at the In-
stitute of Cardiology (Warszawa, Poland). All data were
checked by a qualified cardiologist: normal beats were de-
tected, artifacts were deleted by hand, and arrhythmias were
recognized. The data were sampled at 128 Hz.

Heart rate variability for ten young (age 26—4+3 y)
healthy males was analyzed. Five data sets for hypertrophic
cardiomyopathy (HCM) were also analyzed (2 men and 3
women 26.5+/-2 y). HCM is generally a pathology of the
heart cells but abnormalities in the autonomic regulation are
also observed in this disease so that its progress may affect
heart rate variability.

From the 24 h recordings for the normal subjects, we
extracted 6 h daytime (between 10.30 a.m. and 8 p.m.) and
nighttime (between 10.30 p.m. and 6 a.m.) fragments. From
24 h HCM recordings, 6 h nighttime data were selected: we
chose such fragments of the recording which were recorded
at least 1.5 h after the Holter was switched on and contained
as little as possible of periods with a linear trend. We
checked that, during the night hours, the averages of RR
intervals were all above 900 ms (but do not exceed 1300
ms). In selecting the nighttime recordings, we chose such
fragments of the recordings for which the average RR inter-
val was at least 900 ms.

A detrending method [14] was used in one of the sections
below. The signal was smoothed by a 100-data-point sliding
window. The extrema of the smoothed signal were deter-
mined. Linear trends were found between successive extrema
and removed from data. Finally, the resultant signal was res-
caled to regain the original range of the data.

V. COMPARISON OF 24 H RECORDINGS
WITH THE 6 H FRAGMENTS

Heart rate variability data differ from subject to subject.
For comparison, all recordings were rescaled taking into ac-
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FIG. 4. The 24 h rescaled RR intervals time series for a healthy
subject (CHM). The left fragment in gray is the 6 h daytime data;
the right one is the 6 h nighttime fragment used in the analysis.

count the mean value (RR) and standard deviation o of the
24 h signal: X;= =% (Fig. 4 with the daytime and night-
time segments of the data marked in gray). For the healthy
subjects, the Markov time 7 for the 24 h recordings, the day
and the nighttime fragments varied between 1 and 4, mea-
sured in values of the RR interval index. Using the estimated
7, we calculated the first six Kramers-Moyal coefficients.
Because of the low number of the very short and the very
long RR intervals in all data series, the errors of the
Kramers-Moyal terms for extreme values of the argument
can be large due to the poor statistics at the extreme ends of
the RR intervals distribution. The recognition of this effect is
crucial for the proper measurement of the expansion coeffi-
cients. In most of the analysis of the medical data, we de-
cided to limit the range of X to such for which the statistics
is satisfactory, i.e., the number of data points in a given bin
exceeds 10%. In Figs. 5-8, we depicted the expansion coeffi-
cients for the complete range of the X variable only for three
healthy persons (a signal with small 24 h standard
deviation—patient LAS, with a medium one—patient KWL,

08— — — —
24h

-2 0x 2 4

FIG. 5. Dirift terms for 24 h time series usually exhibit three
zeroes. The acronyms denote individual recordings. Gray vertical
lines mark the good statistics range for the subject KWL.
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FIG. 6. Drift terms (a) for daytime signals with one, two, or
three zeros and (b) for three nighttime signals with a single zero—
within the good statistics range. The acronyms denote the individual
recordings. Gray vertical lines mark the good statistics range for the
subject KWL.

and with a large one—patient BDR). In addition, in these
figures, we marked by thin, vertical lines the range of satis-
factory statistics which was obtained for a single, chosen
case (KWL). The correct range for the other cases did not
differ significantly.

The drift term for all 24 h recordings studied had three or
more zeros (Fig. 5). Similar results were obtained in Refs.
[9,10]. We found that, within the daytime segments, the drift
term had one, two, or three zeros [Fig. 6(a)], while within the
nighttime recordings, only one [Fig. 6(b)]. In two cases, for
the nighttime series, more zeros were obtained (for subject
BDR, five zeros and for KWR, three zeros), but within the
range of good statistics, only a single case (KWR) had three
zeros. The presence of additional zeros can be explained by
nonstationarity, when trends or abrupt changes of the mean
value affect the calculation [10].

The diffusion term D® for the 24 h recordings had at
least a single local minimum (Fig. 7), similar to the results of
Kuusela [8]. Moreover, for the 6 h fragments, especially for
the nighttime data, we obtained a single local minimum in
D@ (Figs. 8(a) and 8(b)]. In most cases, we can see fluctua-
tions in the drift and diffusion terms for the extreme values
of X which—as in the case of the test signal—are due to poor

06— — — — — — —

24 h

FIG. 7. Diffusion terms for the 24 h time series. Note the local
minima. The acronyms denote the individual recordings. Gray ver-
tical lines mark the good statistics range for the subject KWL.
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FIG. 8. Diffusion terms for (a) the daytime fragments and (b)
the nighttime fragments. Note the well-visible local minimum or
minima for each curve. The acronyms denote the individual record-
ings. Gray vertical lines mark the good statistics range the subject
KWL.

statistics in these ranges of X. In the finite range of X be-
tween these extremes, especially for the nighttime record-
ings, we can fit a linear or a parabolic function (for DV) and
a second- or fourth-order polynomial (for D). The func-
tional dependences of the results for daytime are more com-
plicated due to trends in the data. We believe that the night
fragments are better to study because they include less fac-
tors such as stress, physical effort, etc., the presence of which
destroys stationarity. It is well known that—quite apart from
nonstationarity—the heart rate variabilities during the day
and during the night differ. In particular, the average heart
rate is different [15], the variance is larger during the night
[16,17], while the LF and HF contents in the power spectrum
are different [15]. It has been shown also that some statistical
properties are different [18].

The Markov time evaluated from the 24 h recordings was
applied to the nighttime and the daytime segments and we
found a good agreement. In Figs. 9(a) and 9(b), it can be
seen that the diffusion and the drift terms from the day and
nighttime data for the normal GRG are parallel or overlap
specific segments of the 24 h recordings. We obtained the
same result for all other cases studied here. This shows that
the functions of drift and diffusion obtained by Tabar [9] are
comparable to those obtained by Kuusela [8] except that data
from different times of the day were used in the former of the
two studies.

FIG. 9. (a) Daytime and nighttime drift terms overlap the cor-
responding parts of the curve obtained for the 24 h signal. (b) The
minima of the daytime and nighttime diffusion terms overlap with
the minima in the 24 h signal.
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FIG. 10. (a) Odd higher-order Kramers-Moyal coefficients and
(b) even higher-order Kramers-Moyal coefficients for the nighttime
signal for a single healthy subject. Gray vertical lines marked the
good statistics range.

VI. HIGHER-ORDER EXPANSION COEFFICIENTS

Besides the drift and diffusion coefficients, we calculated
four higher-order Kramers-Moyal coefficients. For the day-
time fragments, their values were found to be negligible. The
magnitudes of the higher-order terms for the nighttime series
(especially for D® and D) are non-negligible compared to
DY and D@ in most cases. Figure 10(a) depicts the first
three odd-order coefficients while Fig. 10(b) the even-order
coefficients for the case CHM, a typical example. In the
range of X-yielding acceptable statistics marked with vertical
lines, the D® and D™ attain more than 10% of D) and D@,
respectively. This happens also for the extreme values of X,
but usually the coefficients obtained in these ranges of the
argument should not be taken into account because of the
statistical errors. For seven of the ten 24 h recordings, we
also observed higher-order nonvanishing Kramers-Moyal
terms. Because the nighttime and daytime fragments were
extracted from the 24 h recordings, the properties of the
shorter time series may be found in the 24 h data. Moreover,
a process, which is dominant in the night, may occur in a
wider range of the time than the 6 h selected for analysis.
Note that 24 h signals include additional, external factors
which lead to nonstationarity. We see then that the Langevin
equation, in general, may not be used to describe the dynam-
ics of nighttime heart rate variability data.

VII. DETRENDING THE SIGNAL

To check whether the occurrence of the higher-order
terms in the Kramers-Moyal expansion of the nighttime data
is not due to nonstationarity, we applied the above-described
detrending method to our data. Figure 11 depicts an example
of the effect of our method on the data. The gray curve (left
axis in Fig. 11) depicts the original data while the black one
the same data but detrended (right axis). Note that a by-
product of the detrending method is a symmetrization of the
data. However, contrary to the suggestion in Lim er al. [3],
after detrending, we still obtain the higher-order non-
negligible Kramers-Moyal coefficients. In fact, the higher-
order terms remain the same after detrending, except for ex-
treme ranges of X, for which we observed even a 1 order
increase.
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FIG. 11. The original (gray) and detrended (black) nighttime
recordings for the subject CHB.

Removing trends from the data, we obtained a different
functional dependence for the drift and diffusion terms. Fig-
ures 12(a) and 12(b) depict an example of the functional
dependence of D'V and D® on X for the case CHB with the
coefficients obtained from the detrended data marked in
black and those from the original data in gray. In Figs. 12(a)
and 12(b), we marked the range of good statistics (i.e., with
more than 10% points per bin) for the detrended data with
black vertical lines. It can be seen that D'") became a linear
function for a wider range of arguments, while D@ became
an asymmetrical function. In Fig. 12(b), it can also be seen
that the detrending leaves the D® curve to the right of the
minimum practically unchanged. However, to the left of this

0.4 -

1 1
-2 0o X 2 4 -2 0o X 2 4

FIG. 12. (a) Drift term for original (gray) and detrended (black)
nighttime recordings for subject CHB. (b) Diffusion term for the
original (gray) and detrended (black) nighttime recordings for sub-
ject CHB. The horizontal black dashed lines show the asymmetry
between left and right parts of diffusion curve for detrended data.
Gray vertical lines marked the good statistics range for detrended
data.
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FIG. 13. Diffusion terms for (a) the detrended nighttime signals
for three healthy subjects and (b) detrended nighttime signals for
five HCM patients. All diffusion terms are shown within the range
of good statistics only.

point, the curve increases faster than that for the original data
(in Fig. 12(b): the horizontal black dashed lines show the
asymmetry between the left and the right part of diffusion
curve for the detrended data). In Fig. 13(a), we present the
diffusion term for three detrended nighttime recordings
showing only the points calculated within the good statistics
range. For a single case, STR (not shown), we did not obtain
an asymmetrical D® curve.

Note that for three of the original—not detrended—
nighttime series, for which the drift is a linear function, the
diffusion term also has a characteristic asymmetry. This may
indicate that these cases were less nonstationary than the
others. A linear dependence of the drift coefficient was re-
cently obtained in Refs. [9,10], but the properties of the func-
tional form of D® (except the estimation of a functional
dependence) were not studied in detail.

VIII. RSA IN NIGHTTIME RR INTERVAL SERIES

To the right of X=0, the flatter part of the D® curve
corresponds to long RR intervals, which may suggest a cor-
relation with the deceleration capacity (DC) [19] of the heart
rate. Consequently, the diffusion term for the range of X to
the left of zero may be interpreted as a measure of the accel-
eration capacity (AC). The asymmetry in the diffusion term
is related to the different time scales of the acceleration and
deceleration of heart rate. The capacities DC and AC provide
information about both the vagal and sympathetic activities
as well as the related oscillations (such as respiration) and
baroreflex activity [19]. The non-negligible higher-order co-
efficients and the linear dependence for the drift may indicate
an oscillating process in the nighttime data which induces an
increased correlation. A good candidate for such an oscilla-
tion, and well known to dominate during the night, is RSA
[19,20] which is dominant mostly for children and the young
[21] but occurs in a weaker form in adults. The asymmetry in
the functional dependence of the diffusion term is a conse-
quence of the asymmetry during the inspiration and expira-
tion phases of RSA. Respiratory sinus arrhythmia is itself
easy to detect. However, there seem to be no good ways of a
quantitative assessment of this phenomenon. It is, however,
one of the reasons for heart rate variability: the RR interval
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shortens during the inspiration phase of breathing and it is
lengthened during expiration. The nighttime recordings ap-
pear to be best for studies of the properties of RSA because
the external factors act less so that the dominant oscillations
in the heart rate seem to be mainly due to RSA.

If the heart loses its capacity for acceleration or decelera-
tion, heart rate variability decreases. This usually happens in
pathology. As an example, we present the diffusion terms
within the good statistics range [Fig. 13(b)] obtained for de-
trended nighttime recordings of heart rate variability for five
cases of hypertrophic cardiomyopathy. Note that the minima
of D® do not coincide because average and standard devia-
tion of 24 h signal differ for each case. In comparison to the
results for the healthy subjects [Fig. 13(a)], the asymmetry of
D™ was not obtained in three of the five subjects studied
(the exceptions were GRD and MJM). Since the occurrence
of the asymmetry seems to be typical for healthy subjects,
the lack of asymmetry (or a weakening of asymmetry) in the
functional form of D® may be taken as a measure of the
level of pathology. However, to show this fully, a much
larger group of patients needs to be studied.

IX. SUMMARY

The method of extraction of the Kramers-Moyal coeffi-
cients was implemented and tested using an artificial time
series and the correct data range yielding satisfactory statis-
tics determined. We applied the method to analyze heart rate
variability. Our research repeats parts of the recent results
published in Refs. [8,9] using our own data and focuses on
the properties and interpretation of the Kramers-Moyal ex-
pansion terms, including the higher-order terms. We showed
that the studies of Kuusela [8] and Tabar er al. [9] may be
considered consistent with each other in spite of the fact that,
in Ref. [8], 24 h recordings were analyzed while Tabar et al.
analyzed daytime and nighttime recordings, separately. Note
that both groups modeled heart rate variability using the
Langevin equation assuming Gaussian noise.

Extraction of the Kramers-Moyal expansion terms re-
quires stationarity. We compared daytime and nighttime re-
cordings and we found that the latter are more stationary.
From a physiological point of view, this is a rather obvious
statement. It is interesting, however, that the effect of en-
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hanced stationarity after detrending of the nighttime signal is
obtained in the enhanced range of linearity of the D'V curve
and in the asymmetry of the D® curve.

The higher-order terms of the Kramers-Moyal expansion
were negligible for the daytime heart rate data, while—for
our data—in the nighttime fragments and for most of the 24
h data, they were not negligible (they well exceeded 10% of
the first two coefficients). This effect may be related to cor-
relations due to an oscillation in the heart rate. In the night
hours, the dominant oscillation is respiratory sinus arrhyth-
mia which leads to correlations in the signal. Due to the
occurrence of higher-order coefficients in the Kramers-
Moyal expansion for the nighttime and for the 24 h data, it
was impossible to apply the Langevin equation to reconstruct
the data. Also, in such a case, the Kramers-Moyal expansion
does not reduce to the Fokker-Planck equation.

The shape of the D®(X) curve is particularly important
for the interpretation of this term as due to RSA. Without
detrending, we obtained an asymmetric diffusion term for
only three nighttime recording fragments for the ten normals.
After detrending the nighttime fragments, an asymmetry of
the D® was obtained for nine of the normal subjects. We
interpret this asymmetry as a consequence of the different
time scales of heart rate variability during the inspiration and
the expiration phases of breathing. This effect may be
strongly related to the properties of respiratory sinus arrhyth-
mia as well as to the capacity of the heart for acceleration
and deceleration which are both of interest in medical diag-
nostics.

For the five nighttime recordings of heart rate variability
obtained from hypertrophic cardiomyopathy patients, we
found that the diffusion term has a weaker asymmetry or is
symmetrical. This indicates a possible disruption of respira-
tory sinus arrhythmia in these subjects. Consequently, should
the effect be confirmed on a larger group of patients, the
occurrence of the asymmetry may be used for diagnostic
purposes.
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